Обучение методу математической индукции на адаптационном курсе математики в техническом вузе

Н.В. Прoкoфьeвa

Дoкaзaтeльствo тeoрeм зaнимaeт в мaтeмaтичeскoм oбрaзoвaнии oгрoмнoe мeстo. Шкoльнaя прaктикa пoкaзывaeт, чтo при oбучeнии дoкaзaтeльству тeoрeм учeбнo-пoзнaвaтeльнaя дeятeльнoсть учaщиxся нaпрaвляeтся учитeлeм глaвным oбрaзoм нa пoнимaниe и зaпoминaниe, в ущeрб oзнaкoмлeнию шкoльникoв с мeтoдaми и спoсoбaми рaссуждeний, лeжaщиx в oснoвe пoискa дoкaзaтeльств. В этoм и крoeтся oснoвнaя причинa нeсфoрмирoвaннoсти у пeрвoкурсникoв oбщиx умeний пo дoкaзaтeльству тeoрeм. В рeзультaтe этoгo студeнты зaчaстую aвтoмaтичeски зaписывaют зa лeктoрoм мaтeмaтичeскиe дoкaзaтeльствa, нe принимaя aктивнoгo учaстия в иx пoискe.

Сaмыми рaспрoстрaнёнными мeтoдaми дeдуктивныx рaссуждeний в высшeй мaтeмaтикe являются синтeтичeский, aнaлитичeский, aнaлитикo-синтeтичeский мeтoды, мeтoд oт прoтивнoгo и мeтoд мaтeмaтичeскoй индукции.

Мeтoдoм дoкaзaтeльствa нaзывaют спoсoб связи aргумeнтoв oт услoвия к зaключeнию суждeния. Тo eсть, мeтoд дoкaзaтeльствa — этo нeкaя oбщaя сxeмa лoгичeскиx связeй, пoльзуясь кoтoрoй мoжнo нaйти спoсoб дoкaзaтeльствa мaтeмaтичeскoгo утвeрждeния.

Мeтoд дoкaзaтeльствa мoжнo рaссмaтривaть с рaзныx пoзиций. Нaми были выдeлeны чeтырe oснoвныx aспeктa рaссмoтрeния мeтoдa дoкaзaтeльствa: идeйный, прoцeссуaльный, фoрмaльнo-лoгичeский и функциoнaльнo-oцeнoчный [2].

Идeйный aспeкт рaссмoтрeния мeтoдa дoкaзaтeльствa мы связывaeм, прeждe всeгo, с oпрeдeлeниeм xaрaктeристики oбщeгo замысла метода; процессуальный аспект — с наличием в методе доказательства определённой последовательности логических действий или алгоритмических предписаний, которые, в конечном счёте, определяют его структуру; формально-логический аспект — с определением правил и законов логики, лежащих в основе данного метода; функционально-оценочный аспект связан с определением условий и области применения метода, его достоинств и недостатков.

Рассмотрим содержание каждого из названных аспектов на примере метода математической индукции.

Метод математической индукции является одним из высокоэффективных методов доказательства истинности выдвинутых предположений и доказательств теорем высшей математики. Хотя этот метод в математике не нов (он был предложен Б. Паскалем в 1654 году для доказательства простого способа вычисления числа сочетаний), интерес исследователей к нему возрос в связи с развитием дискретной математики.

В педагогических вузах методу математической индукции и его обоснованию посвящена целая лекция по алгебре и теории чисел (первый курс, тема "Числовые системы"). В технических вузах программа по высшей математике иная. Она предусматривает изучение метода математической индукции на первых лекциях математического анализа для доказательства тождеств, неравенств и бинома Ньютона, используемых в основном для вычисления пределов. Так, лекционный материал, посвящённый данному методу, играет зачастую подчинённую роль и преподносится студентам в тезисной форме. В связи с этим метод математической индукции воспринимается первокурсниками как искусственная схема рассуждения, не понятная ими по сути, но доступная в рамках каждого отдельного шага. Особенно это проявляется в тех случаях, когда студенты встречаются с ним впервые.

Пропедевтическое изучение метода математической индукции целесообразно осуществлять в соответствии с выделенными выше аспектами на занятиях адаптационного или вводного курсов математики.

Основные характеристики аспектов метода математической индукции представлены в ниже следующей таблице.

№Аспекты рассмотрения методаХарактеристика аспекта метода1Идейный аспектИдея математической индукции была, фактически, известна уже в древности. Действительно, налицо связь этого метода с античным парадоксом "кучи": одно зерно не образует кучи; если n зёрен не могут образовать кучи, то n+1 зерно не может образовать кучи, а потому куч не существует, что противоречит опыту. Современное название метода было введено де Морганом в 1838 году. В настоящее время в теории и практике обучения используется в качестве иллюстрирующей идеи этого метода идея "бегущей волны доказательств", модельным примером которой является волна падений бесконечного ряда костяшек домино. Пусть какое угодно число костяшек домино выставлено в ряд таким образом, что каждая костяшка, падая, обязательно опрокидывает следующую за ней костяшку (в этом заключается индукционный переход). Тогда, если мы толкнём первую костяшку (это база индукции), то все костяшки в ряду упадут. 2Процессуальный аспектМетод математической индукции (ММИ) можно рассматривать как алгоритмическое предписание, состоящее из трёх этапов: базы индукции (БИ), шага индукции (ШИ) и индукционного вывода (ИВ). БИ. Проверяется истинность утверждения А (n) для n = 1. ШИ. Доказывают, что если утверждение А (n) справедливо при n = k, то оно справедливо и при n = k+1. ИВ. Делают вывод, что А (n) истинно при всех натуральных значениях n. 3Формально-логический аспект ММИ базируется на принципе математической индукции, справедливость которого доказывается на основании аксиомы индукции (аксиомы Пеано, которая определяет натуральные числа). То есть, метод является дедуктивным по сути и индуктивным по форме. Известны различные формулировки принципа математической индукции. Одна из них следующая: пусть дано некоторое утверждение A (n), зависящее от натурального числа n, и выполняются следующие условия: 1) A (n) истинно при n=1; 2) если A (n) истинно при всех n=k (где k — любое натуральное число), то оно истинно и для следующего значения n=k+1. Тогда А (п) истинно для всех натуральных значений п. 4Функционально-оценочный аспектПонятие "математическая индукция" прошло стадии развития от идеи, аксиомы индукции, принципа индукции и, наконец, до понятия метода математической индукции. ММИ используется при доказательстве предложений, зависящих от переменного натурального числа n или при доказательстве утверждения для бесконечного количества математических объектов. Для ММИ безразлична природа этих объектов. Они могут быть геометрическими, теоретико-числовыми и т.д. ММИ широко применяется при доказательстве теорем, тождеств, неравенств, при решении задач на делимость, при решении некоторых геометрических задач; является основным инструментом доказательства правильности рекурсивных алгоритмов; используется для доказательства истинности выдвинутых предположений.

Исходя из теории поэтапного формирования умственных действий и психологических исследований, изучение метода математической индукции можно проводить по следующей схеме:

. Актуализация знаний студентов. Ознакомление студентов с понятием метода математической индукции полезно начинать с введения сопутствующих понятий, таких как индукция и дедукция, полная и неполная индукция, гипотеза исследования. При этом необходимо привести яркие примеры из истории математики "обманчивых" гипотез, прошедших лишь "конечную" проверку [4]. В результате чего можно сделать вывод, что неполная индукция часто приводит к ошибочным результатам, поэтому не считается в математике законным методом строгого доказательства. Однако неоспорима эвристическая роль неполной индукции, как мощного метода открытия новых истин.

Тогда возникает вопрос. Имеется утверждение, справедливое в нескольких частных случаев. Все частные случаи рассмотреть невозможно. Как же узнать справедливо ли это утверждение вообще? Во многих случаях этот вопрос удаётся решить посредством применения особого метода рассуждений — метода математической индукции.

Рассмотрим особый пример на применение метода математической индукции, который имеет свою замечательную историю. Выдающийся математик А.Н. Колмогоров вспоминал: "Радость математического "открытия" я познал рано, подметив в возрасте пяти-шести лет закономерность

=12,1 + 3 = 22,1 + 3 + 5 = З2,1 + 3 + 5 + 7 = 42 и так далее.

В нашем доме под Ярославлем мои тётушки устроили маленькую школу, в которой занимались с десятком детей разного возраста по новейшим рецептам педагогики того времени. В школе издавался журнал "Весенние ласточки". В нем мое открытие было опубликовано." [1].

Какое именно доказательство было приведено в этом журнале, не известно… Сама гипотеза, которая, наверняка, возникла после обнаружения этих частных случаев, состоит в том, что формула 1+3+5+…+ (2n — 1) = n2 верна при любом натуральном числе п. Теперь мы обязаны либо строго доказать справедливость этой формулы, либо её опровергнуть. Для доказательства следует воспользоваться методом математической индукции.

. Ознакомление с идеей метода (см. табл. п. №1). Заметим, что идею (смысловую суть) метода математической индукции можно рассматривать, используя также (кроме аналогии с волной падений костяшек домино) аналогией с ходьбой по лестнице, застёжкой-молнией и т.п.

3.Запись алгоритмического предписания для решения задач и доказательства математических утверждений методом математической индукции (см. табл. п. №2).

4.Проведение логического обоснования метода. Метод математической индукции основан на принципе математической индукции, который доказывается с помощью аксиомы Пеано (аксиомы арифметики натуральных чисел). Метод математической индукции — дедуктивный метод доказательства. Название "математическая индукция" обусловлено тем, что этот метод просто ассоциируется в нашем сознании с традиционными "индуктивными" умозаключениями (ведь базис действительно доказывается для частного случая); индуктивный шаг доказывается по строгим канонам дедуктивных рассуждений [3].

Академик А.Н. Колмогоров считал, что "понимание и умение правильно применять принцип математической индукции, является хорошим критерием логической зрелости, которая совершенно необходима математику" [5].

Разделяя мнение известного методиста И.С. Рубанова, отметим, что знакомить обучаемых со строгой формулировкой принципа математической индукции в самом начале изучения данного метода нецелесообразно. "Формализация интуитивно ясного утверждения может вызвать у добросовестного ученика чувство непонимания и породить неуверенность. Напротив, надо всеми средствами делать схему метода математической индукции живее и нагляднее" [2]. Поэтому принцип математической индукции образно можно сформулировать так: если в очереди первой стоит женщина, и за каждой женщиной стоит женщина, то все в очереди — женщины.

Определение сферы применения метода, его достоинств и недостатков (функционально-оценочный аспект) (см. табл. п. №4).

5.Решение типовых задач на отработку метода математической индукции.

В рамках этой статьи приведём лишь доказательство одной формулы. Докажем предположение, что 1+3+ 5+ …+ (2n — 1) = n2, где

Непосредственная проверка этого утверждения для каждого значения n невозможна, поскольку множество натуральных чисел бесконечно. Чтобы доказать это утверждение, воспользуемся методом математической индукции.

БИ: Имеем n=1=12. Следовательно, утверждение верно при n=1, т.е. А (1) истинно.

ШИ: Докажем, что А (k) A (k+1).

Пусть k — любое натуральное число и пусть утверждение справедливо для n=k, т.е.1+3+5+…+ (2k-1) =k2. Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что 1+3+5+…+ (2k+1) = (k+1) 2.

В самом деле, 1+3+5+…+ (2k-1) + (2k+1) =k2+2k+1= (k+1) 2.

ИВ: Итак, А (k) А (k+1). На основании принципа математической индукции заключаем, что предположение А (n) истинно для любого nN.

Представленная методика изучения метода математической индукции базируется на четырёх аспектах рассмотрения метода доказательства. Эта идея может быть успешно реализована на адаптационных занятиях по математике в техническом вузе и при изучении синтетического, аналитического методов, а также метода от противного.

метод математическая индукция теорема

Литература

1.Колмогоров А.Н. Математика — наука и профессия / Сост. Г.А. Гальперин. — М.: Наука. Гл. ред. физ. — мат. лит., 1988. — 288 с. — (Б-чка "Квант". Вып.64.)

2.Лушникова Н.В., Зайкин М.И. К вопросу о структуре метода математического доказательства // Современное образование: научные подходы, опыт, проблемы, перспективы: Мат-лы всерос. науч.-практ. конф. — Пенза, 2006. — С.102 — 105.

.Рубанов И.С. Как обучать методу математической индукции // Математика в школе. — 1996. — №1. — С.14 — 20.

.Соминский И.С. Метод математической индукции. — М.: Наука. Гл. ред. физ. — мат. лит., 1965. — 56 с.

.Успенский В.А. Простейшие примеры математических доказательств. — 2-е изд., стереотипное, — М.: Изд-во МЦНМО, 2012, — 56 с.

Нужна качественная работа без плагиата?

Эта запись защищена паролем. Введите пароль, чтобы посмотреть комментарии.